Intel’s Push to Enthusiasts: Soldered CPUs and 6.9 GHz Overclocks

Thursday, October 11th, 2018 - CPUs, Teknologi

Intel’s Push to Enthusiasts: Soldered CPUs and 6.9 GHz Overclocks

One of the prominent part of Intel’s announcement this week for the new 9th Generation core processors was that both the overclockable consumer processors and the new high-end desktop processors all feature a soldered thermal interface material (STIM) between the silicon die and the heatspreader, which is a vast improvement over the previous thermal interface material due to its ability to conduct thermal energy away from the silicon die. As part of the announcement, Intel also engaged in some extreme overclocking at its launch event using Liquid Nitrogen as an effective coolant, and some overclocking world champions.

Advertisement

Choosing A Thermal Interface Material (TIM)

With the desktop processors we use today, they are built from a silicon die (the smart bit), a package substrate (the green bit), a heatspreader (the silver bit), and a material that helps transfer heat from the silicon die to the heatspreader. The quality of the binding between the silicon die and the heatspreader using this thermal interface material is a key component in the processors ability to remove the heat generated from using it.

Traditionally there are two different types of thermal material: a heat conductive paste, or a bonded metal. Both have positives and negatives.


Image from EKWB

The heat conductive paste is a universal tool – it can be applied to practically any manufactured processor, and is able to deal with a wide range of changing variables. Because metals expand under temperature, when a processor is used and gets hot, it expands – so does the heatspreader. The paste can easily deal with this. This allows paste-based processors to live longer and in more environments. Using a bonded metal typically reduces the level of thermal cycling possible, as the metal also expands and contracts in a non-fluid way. This might mean the processors has a rated lifespan of several years, rather than a dozen years. However, the bonded metal solution performs a lot, lot better, but is slightly more expensive (a dollar or two per unit, at most, when the materials and manufacturing are taken into account).


Ryzen Delidded

Thermal Interface
Intel
IntelCeleronPentiumCore i3Core i5Core i7
Core i9
HEDT
Sandy BridgeLGA1155PastePastePasteBondedBondedBonded
Ivy BridgeLGA1155PastePastePastePastePasteBonded
Haswell / DKLGA1150PastePastePastePastePasteBonded
BroadwellLGA1150PastePastePastePastePasteBonded
SkylakeLGA1151PastePastePastePastePastePaste
Kaby LakeLGA1151PastePastePastePastePaste
Coffee Lake1151 v2PastePastePastePastePaste
CFL-R1151 v2???K = Bonded
AMD
ZambeziAM3+BondedCarrizoAM4Bonded
VisheraAM3+BondedBristol RAM4Bonded
LlanoFM1PasteSummit RAM4Bonded
TrinityFM2PasteRaven RAM4Paste
RichlandFM2PastePinnacleAM4Bonded
KaveriFM2+Paste / Bonded*TRTR4Bonded
CarrizoFM2+PasteTR2TR4Bonded
KabiniAM1Paste   
*Some Kaveri Refresh were bonded

In our Ryzen APU delidding article, we went through the process of removing the heatspreader and conductive paste from a popular low cost product, and we showed that replacing that paste with a bonded liquid metal improved temperatures, overclocking, and performance in mid-range overclocks. If any company wants to make enthusiasts happy, using a bonded metal is the way to go.

Intel on Enthusiasts

For several years, Intel has always stated that they are there for enthusiasts. In the distant past, as the table above shows, Intel provided processors with a soldered bonded metal interface and was happy to do so. In recent times however, the whole product line was pushed into the heat conductive paste for a number of reasons.


Slide for Intel's 4th Gen, which used paste

As Intel was continually saying that they still cared about enthusiasts, a number of users were concerned that Intel was getting itself confused. Some believed that Intel had ‘enthusiasts’ and ‘overclockers’ in two distinct non-overlapping categories. It is what it is, but now Intel has returned to using applying STIM and wants to court overclockers again.

Pushing Frequencies with Liquid Nitrogen

I should be safe in saying that most AnandTech readers understand that in order to push an overclock, bigger and better cooling is required. This might mean a good air cooler, water cooling, or if you want an exotic daily system, chilled water. The idea here is that as the voltage and frequency is raised, more exotic cooling is required to keep the system from overheating. Beyond chilled water, there are a bunch of enthusiasts that use sub-zero coolants.

Competitive overclocking is an industry to which I am relatively intimate: I have at some point in my existence hit #2 in the world rankings, albeit briefly. The nature of the extreme overclocking scene has changed from very motivated enthusiasts and engineers to vendor backed individuals with $000s in hardware trying to get the highest every frequency, or break particular benchmark world records. It comes down to experience, preparation, and a good amount of luck to get the best hardware and the best results in the world.

For example, the high-frequency world record on AMD is 8794.33 MHz, using a FX-8350 under liquid nitrogen, whereas Intel’s record is 8532.17 MHz on a Celeron 352. Each processor runs differently when you get down to -196C, and some of the older processors were better at pushing the envelope. But while newer processors might not clock as high, the additional cores and raw per-MHz performance help push the benchmarking part of the world records higher.

So while a good air overclock on a high-end gaming processor like the Core i7-8086K is around 5.4 GHz, under liquid nitrogen Intel’s hired guns on the day were pushing 6.9 GHz with the latest 9th generation Core i9-9900K on all cores, and reaching 7.1 GHz internally, with up to 7.4 GHz on a single core. Given that the chip is new, there are usually a good couple of months of learning a new platform and chip binning to push it as high as the previous generation, so we’re likely to see higher over the coming months.

The two overclockers hired by Intel, known in the community as Splave and Steponz, were happily breaking records for 8-core processors left right and center for various CPU focused tests. They also achieved at least one ‘global’ world record, beating every other processor that has ever existed, in PCMark 10.

For a few other tests, Intel achieved some best ever 8-core results.

What’s the point?

Not everyone is going to run liquid nitrogen on their system. Not only is the cooling setup a disaster to maintain 24/7, as well as expensive, the inherent instability in the system at this frequency and the tuning required isn’t practical as it requires constant tweaking. Extreme overclocking is often compared to drag racing – to see who can go the quickest quarter mile. There are several parallels – going for the highest frequency might be just a peak speed contest, while running a complex benchmark is more akin to Formula 1. There are users that have been competitive overclocking for decades, and for a select few, it has become a career that has ended up with motherboards that offer new features that everyone who wants to can use. Sure, it isn’t as useful as taking a family saloon to the shops, but it is fun to watch them go.

Related Reading

 

 

Source link : Intel’s Push to Enthusiasts: Soldered CPUs and 6.9 GHz Overclocks

Incoming search terms:

Advertisement

Pictures gallery of Intel’s Push to Enthusiasts: Soldered CPUs and 6.9 GHz Overclocks

Intel’s Push to Enthusiasts: Soldered CPUs and 6.9 GHz Overclocks | admin | 4.5